Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2316540120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170751

RESUMO

How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using 6-wk-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni, ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within 2 to 3 d of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP, which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter (lctP) led to identification of a putative thiol-based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides better insights into the pathogenicity of C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Animais , Humanos , Camundongos , Ácido Láctico/metabolismo , Campylobacter jejuni/genética , Furões , Transportadores de Ácidos Monocarboxílicos
2.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873437

RESUMO

How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using six-week-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni , ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within two-three days of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP , which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter ( lctP ) led to discovery of a putative thiol based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides new insights into the pathogenicity of C. jejuni . Significance: There is a gap in knowledge about the mechanisms by which C. jejuni populations expand during infection. Using an animal model which accurately reflects human infection without the need to alter the host microbiome or the immune system prior to infection, we explored pathophysiological alterations of the gut after C. jejuni infection. Our study identified the gut metabolite L-lactate as playing an important role as a growth substrate for C. jejuni during acute infection. We identified a DNA binding protein, LctR, that binds to the lctP promoter and may repress lctP expression, resulting in decreased lactate transport under low oxygen levels. This work provides new insights about C. jejuni pathogenicity.

3.
J Vis Exp ; (184)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35815999

RESUMO

Identification and isolation of contagious individuals along with quarantine of close contacts, is critical for slowing the spread of COVID-19. Large-scale testing in a surveillance or screening capacity for asymptomatic carriers of COVID-19 provides both data on viral spread and the follow-up ability to rapidly test individuals during suspected outbreaks. The COVID-19 early detection program at Michigan State University has been utilizing large-scale testing in a surveillance or screening capacity since fall of 2020. The methods adapted here take advantage of the reliability, large sample volume, and self-collection benefits of saliva, paired with a cost-effective, reagent conserving two-dimensional pooling scheme. The process was designed to be adaptable to supply shortages, with many components of the kits and the assay easily substituted. The processes outlined for collecting and processing SARS-CoV-2 samples can be adapted to test for future viral pathogens reliably expressed in saliva. By providing this blueprint for universities or other organizations, preparedness plans for future viral outbreaks can be developed.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Reprodutibilidade dos Testes , Saliva , Manejo de Espécimes
4.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932316

RESUMO

Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival.IMPORTANCECampylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Galinhas/microbiologia , Ácido Láctico/metabolismo , Proteínas de Transporte de Fosfato/genética , Doenças das Aves Domésticas/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Metabolômica/métodos , Mutação , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Estresse Fisiológico
5.
Front Vet Sci ; 5: 220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283792

RESUMO

Tonsils, lympho-epithelial tissues located at the junction of the oropharynx and nasopharynx, play a key role in surveillance, colonization, and persistence of inhaled and ingested pathogens. In pigs, the tonsils are a reservoir for numerous bacteria and viruses, including host-specific pathogens and potential zoonotic pathogens as well as commensal organisms. However, there are no in depth studies of the development of the tonsillar microbiome in pigs, or any mammal, over time. The goal of this study was to follow the development of the tonsil microbiome in healthy pigs from birth to market weight. Samples were collected using tonsil brushes from 16 piglets (4 each from 4 sows) at newborn, 1, 2, 3, and 4 weeks of age, and from 8 of those piglets at 6, 8, 10, 12, 16, and 19 weeks of age. Bacterial DNA was isolated from each sample and 16S rDNA genes were amplified and sequenced. Sequence analysis showed that members of the Streptococcaceae, Pasteurellaceae, and Moraxellaceae were present at all time points and represent the three most abundant families identified. Other community members appeared transiently or increased or decreased significantly with disruption events or stress. We observed four significant shifts in the tonsil community that coincided with well-defined disruption events: weaning plus addition of Carbadox plus movement to the nursery at week 3, removal of Carbadox and addition of Tylan at week 5, removal of Tylan and habitat change at week 9, and habitat change at week 16. Weaning triggered a bloom of Streptococcaeae and decrease of Moraxellaceae. The shift from Carbadox to Tylan led to reduction in Proteobacteria and Streptococcaceae but an increase in other Firmicutes, accompanied by a dramatic increase in community richness. Cessation of Tylan coincided with a return to a less rich community, and a bloom in Clostridiales. The final shift in habitat was accompanied by a decrease in Clostridiales and increase in Proteobacteria. The tonsillar microbiome of older pigs resembled the previously described mature core tonsillar microbiome. This study demonstrates a temporal succession in the development of the pig tonsillar microbiome, and significant community shifts that correlate with disruption events.

6.
BMC Microbiol ; 18(1): 35, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661149

RESUMO

BACKGROUND: Porcine tonsils are lympho-epithelial tissues, colonized by numerous bacteria and viruses, that act as a reservoir for both host-specific pathogens and zoonotic pathogens with a high potential of transmission to humans. There are no existing studies describing the development of the tonsillar microbiome. We sequenced 16S rRNA genes from tonsillar samples of pigs to follow the development of the microbial communities from birth through weaning. Samples derived from sows were also analyzed to determine potential sources for the tonsil microbiome in piglets. RESULTS: The composition of the newborn piglet tonsil microbiome could be differentiated by litter and had strong similarity to the sow teat skin as well as sow vaginal microbiome. The tonsil microbiome in these young piglets was mainly dominated by members of the Pasteurellaceae, Moraxellaceae, and Streptococcaceae families, while there were some transient members of the microbiome that were abundant at specific times, such as Staphylococcaceae in newborns and Fusobacteriaceae and Leptotrichiaceae in weeks 2 and 3. The microbiome initially differed between litters but over the following 3 weeks the communities of different litters converged in composition and then diverged in week 4 due to a combination of changes and stresses associated with weaning, including a shift from milk to a solid diet, in-feed Carbadox® and room change. CONCLUSIONS: A significant portion of the tonsil microbiome was acquired either at birth from the sow vaginal tract or within a few hours post-birth from the sow teat skin. Our data demonstrate a temporal succession in the development of the pig tonsillar microbiome through the first weeks of life, with a convergence in the composition of the microbiome in all piglets by 3 weeks of age. The combination of management practices associated with weaning coincided with dramatic shifts in the tonsillar microbiome.


Assuntos
Bactérias/classificação , Microbiota , Tonsila Palatina/microbiologia , Filogenia , Suínos/microbiologia , Desmame , Ração Animal , Animais , Animais Recém-Nascidos , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/análise , Dieta/veterinária , Feminino , Especificidade de Hospedeiro , Microbiota/genética , Leite , RNA Ribossômico 16S/genética , Análise de Sequência , Pele/microbiologia , Vagina/microbiologia
7.
Proc Natl Acad Sci U S A ; 114(38): E8053-E8061, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28855338

RESUMO

Campylobacter jejuni, a leading cause of bacterial gastroenteritis, is naturally competent. Like many competent organisms, C. jejuni restricts the DNA that can be used for transformation to minimize undesirable changes in the chromosome. Although C. jejuni can be transformed by C. jejuni-derived DNA, it is poorly transformed by the same DNA propagated in Escherichia coli or produced with PCR. Our work indicates that methylation plays an important role in marking DNA for transformation. We have identified a highly conserved DNA methyltransferase, which we term Campylobacter transformation system methyltransferase (ctsM), which methylates an overrepresented 6-bp sequence in the chromosome. DNA derived from a ctsM mutant transforms C. jejuni significantly less well than DNA derived from ctsM+ (parental) cells. The ctsM mutation itself does not affect transformation efficiency when parental DNA is used, suggesting that CtsM is important for marking transforming DNA, but not for transformation itself. The mutant has no growth defect, arguing against ongoing restriction of its own DNA. We further show that E. coli plasmid and PCR-derived DNA can efficiently transform C. jejuni when only a subset of the CtsM sites are methylated in vitro. A single methylation event 1 kb upstream of the DNA involved in homologous recombination is sufficient to transform C. jejuni, whereas otherwise identical unmethylated DNA is not. Methylation influences DNA uptake, with a slight effect also seen on DNA binding. This mechanism of DNA discrimination in C. jejuni is distinct from the DNA discrimination described in other competent bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Metilação de DNA/fisiologia , Metilases de Modificação do DNA/metabolismo , DNA Bacteriano/metabolismo , Transformação Bacteriana/fisiologia , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Metilases de Modificação do DNA/genética , DNA Bacteriano/genética
8.
Infect Immun ; 81(8): 2952-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23732171

RESUMO

Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, an economically important disease of pigs. The hfq gene in A. pleuropneumoniae, encoding the RNA chaperone and posttranscriptional regulator Hfq, is upregulated during infection of porcine lungs. To investigate the role of this in vivo-induced gene in A. pleuropneumoniae, an hfq mutant strain was constructed. The hfq mutant was defective in biofilm formation on abiotic surfaces. The level of pgaC transcript, encoding the biosynthesis of poly-ß-1,6-N-acetylglucosamine (PNAG), a major biofilm matrix component, was lower and PNAG content was 10-fold lower in the hfq mutant than in the wild-type strain. When outer membrane proteins were examined, cysteine synthase, implicated in resistance to oxidative stress and tellurite, was not found at detectable levels in the absence of Hfq. The hfq mutant displayed enhanced sensitivity to superoxide generated by methyl viologen and tellurite. These phenotypes were readily reversed by complementation with the hfq gene expressed from its native promoter. The role of Hfq in the fitness of A. pleuropneumoniae was assessed in a natural host infection model. The hfq mutant failed to colonize porcine lungs and was outcompeted by the wild-type strain (median competitive index of 2 × 10(-5)). Our data demonstrate that the in vivo-induced gene hfq is involved in the regulation of PNAG-dependent biofilm formation, resistance to superoxide stress, and the fitness and virulence of A. pleuropneumoniae in pigs and begin to elucidate the role of an in vivo-induced gene in the pathogenesis of pleuropneumonia.


Assuntos
Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae/fisiologia , Actinobacillus pleuropneumoniae/patogenicidade , Fator Proteico 1 do Hospedeiro/metabolismo , Infecções por Actinobacillus/genética , Infecções por Actinobacillus/veterinária , Sequência de Aminoácidos , Animais , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Eletroforese em Gel de Poliacrilamida , Fator Proteico 1 do Hospedeiro/genética , Dados de Sequência Molecular , Pleuropneumonia/genética , Pleuropneumonia/metabolismo , Pleuropneumonia/veterinária , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Doenças dos Suínos/genética , Virulência/fisiologia , beta-Glucanas
9.
FEMS Immunol Med Microbiol ; 57(1): 59-68, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656190

RESUMO

Actinobacillus pleuropneumoniae is the causative agent of severe necrotizing pneumonia in swine. Previously, we identified the ohr gene encoding organic hydroperoxide reductase as specifically induced during infection of pigs, induced in vitro by organic peroxides but not other oxygen radicals, and present in A. pleuropneumoniae serotypes 1, 9 and 11 but not in other serotypes (Shea & Mulks, 2002). Through analysis of flanking genomic sequence, we identify a homologue of gst, which encodes glutathione-S-transferase, immediately downstream of ohr and demonstrate that ohr-gst confers low but uninducible Ohr activity to serotype 5. We further identify a genomic island of 9.3 kb, flanked by lysR and araC homologues, in serotypes 1, 9 and 11, which contains ohr and gst. In serotypes 2-8, 10 and 12, this region of the genome contains a 1.1-kb islet with a putative transposase flanked by lysR and araC.


Assuntos
Actinobacillus pleuropneumoniae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ilhas Genômicas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Actinobacillus pleuropneumoniae/isolamento & purificação , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Ordem dos Genes , Dados de Sequência Molecular , Análise de Sequência de DNA , Suínos/microbiologia
10.
Infect Immun ; 77(11): 4925-33, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19703979

RESUMO

In Actinobacillus pleuropneumoniae, which causes porcine pleuropneumonia, ilvI was identified as an in vivo-induced (ivi) gene and encodes the enzyme acetohydroxyacid synthase (AHAS) required for branched-chain amino acid (BCAA) biosynthesis. ilvI and 7 of 32 additional ivi promoters were upregulated in vitro when grown in chemically defined medium (CDM) lacking BCAA. Based on these observations, we hypothesized that BCAA would be found at limiting concentrations in pulmonary secretions and that A. pleuropneumoniae mutants unable to synthesize BCAA would be attenuated in a porcine infection model. Quantitation of free amino acids in porcine pulmonary epithelial lining fluid showed concentrations of BCAA ranging from 8 to 30 micromol/liter, which is 10 to 17% of the concentration in plasma. The expression of both ilvI and lrp, a global regulator that is required for ilvI expression, was strongly upregulated in CDM containing concentrations of BCAA similar to those found in pulmonary secretions. Deletion-disruption mutants of ilvI and lrp were both auxotrophic for BCAA in CDM and attenuated compared to wild-type A. pleuropneumoniae in competitive index experiments in a pig infection model. Wild-type A. pleuropneumoniae grew in CDM+BCAA but not in CDM-BCAA in the presence of sulfonylurea AHAS inhibitors. These results clearly demonstrate that BCAA availability is limited in the lungs and support the hypothesis that A. pleuropneumoniae, and potentially other pulmonary pathogens, uses limitation of BCAA as a cue to regulate the expression of genes required for survival and virulence. These results further suggest a potential role for AHAS inhibitors as antimicrobial agents against pulmonary pathogens.


Assuntos
Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae/fisiologia , Actinobacillus pleuropneumoniae/patogenicidade , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Infecções por Actinobacillus/genética , Aminoácidos de Cadeia Ramificada/genética , Animais , Proteínas de Bactérias/genética , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Regulação para Cima , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...